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Abstract. A linear percepuon is sIcchasticaJly Irained on a mmpted paining data sec Ihis 
enables the effect of noise on the data to be studied. The average properties of the network are 
calculated using lhe Gardner method following Seung er 01. A weight decay term is added Io the 
training energy and the effect on generalization studied and compared with previously known 
results. A prescription for sening lhe optimal weigh1 decay parameter at finite temperahue is 
presented. The results also suggest an initial temperahue for an annealing schedule. 

1. Introduction 

Neural networks can be trained to implement a particular rule by the process of supervised 
leaming [I]. This is done by presenting the network with a finite data set sampled from the 
set of all possible inputs and adjusting the network parameters (the weights) such that some 
cost function is minimized. The actual performance of the system is evduated on a finite test 
set, again sampled from the entire set of possible inputs. However, in use, the network may 
be presented with any pattern selected from the set of all possible input patterns according 
to some distribution. The performance of the network under these conditions could be very 
different from that evaluated on the test set; thus it is useful to have an analytical method 
for estimating the generalization ability of a network over the set of all possible inputs. 
One possible method is to use the theory of vc dimension [2,3] to calculate bounds on the 
generalization ability, another is to calculate average generalization abilities by statistical 
physics methods. 

The statistical physics approach has been studied in some depth and numerous techniques 
have emerged [4]. One of these methods, presented by Krogh and Hertz [51, uses the 
spectrum of eigenvalue solutions of the training equation to study the network dynamics 
and also to estimate the asymptotic time behaviour of the network. Krogh and Hertz used 
this method to calculate the generalization error of a h e a r  perceptron trained with a weight 
decay on a data set that has been corrupted by noise [SI. This noise is static throughout the 
training cycle and thus cannot be removed by simple averaging. A prescription for setting 
the weight decay such that the generalization error is minimized is also presented by Krogh 
and Hertz. The generalization error is a measure of the network's generalization ability, 
that is, the higher the generalization error, the worse the generalization ability. 

The asymptotic time behaviour of the system may also be calculated using another 
statistical physics method based on the Gwdner method [7,8]. This method has been 
used to study the leaming and generalization of simple networks where the network is 
trained stochastically [9-12]. Stochastic training involves adding dynamic noise to the 
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weight update equation giving a Langevin equation. The asymptotic time behaviour of this 
equation produces a Gibbs distribution on the weight vectors. The resulting free energy may 
then be calculated by the replica method [13] from which the generalization abilities can 
be derived [ I  I]. Training with noise has been shown to he beneficial to the generalization 
ability of a network [14], since it enables the network to explore more of the weight space 
and prevents the system from getting stuck in local minima; it plays an important mle in 
most training procedures. 

In this paper, a linear perceptron trained with dynamic noisefrom a noisy data set is 
studied within the formalism of Seung er d. A weight decay term is added to the training 
procedure in order to examine its generalization improvement capabilities. A weight decay 
has been shown to be a particular case of a discrete distribution of weights [12]. The use 
of this penalty term eliminates the need for a spherical constraint on the weight vector and 
thus comparisons with the results of Krogh and Hertz's method may also be drawn. The 
perceptron is trained on a training data set generated by adding Gaussian noise to the output 
of a known linear perceptron. We can therefore compare the network-generated solution 
(the sfudent) with the known generator of the training data (the teacher) to calculate the 
generalization ability of the student. 

In section 2, the model used to calculate the generalization and training errors is outlined. 
In section 3 the replica calculation is introduced with the associated order parameters to 
evaluate the average generalization and training errors. Section 4 presents results for the 
various limits of interest and draws some comparisons with the results of Krogh and Hertz. 
Section 5 uses the results derived in the previous sections to optimize the training parameters. 
The conclusions are discussed in section 6. 

A P Dunmur and D J Wallace 

2. The model 

In this section the model is presented, along with an outline of the calculation of the average 
generalization and training errors. The calculation follows that done by Seung et al. but 
alters the formalism to include a weight decay term and noise on the inputs. 

A linear perceptron with N inputs is under study. The output, U of the network is given 
as a function of the continuous valued weight vector W and input vector a by 

Y 

0 = c w i s i .  
i=L 

The network is trained on a data set consisting of p input-output pairs [(d, d); 1 = 
I ,  . . . , p )  generated by a teacher perceptron, WO, and corrupted by Gaussian noise. That 
is, ui = (WO. sf + qf). The noise is zero-mean Gaussian noise of variance y2 and the 
length of the teacher, Q, is given by d = (I/N)Wo. WO. 

The training energy, E,, is defined to be 

where the error measure we use is 
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and A is the positive weight decay parameter. The number of patterns per weight, (Y = p / N .  
The training process used is stochastic, that is dynamic noise with variance 2T is added 

to the weight update equation. Asymptotically, this results in aGibbs distribution of student 
weights and the partition function 

2= dp(W) exp s I=I 

where ,9 = l/T. By analogy with thermodynamic terminology, T is called the temperature. 
The weight decay term is taken into the apriori distribution of student weights; d p ( W )  = 
e-pnw’B dW.  The weight decay can be seen to be equivalent to taking an a priori Gaussian 
distribution of student weights with variance I/BA. The Gibbs distribution can be used to 
calculate averages over the distribution of student weights, the so called thermal average, 
denoted by ( ) T .  

This formalism involves the use of the canonical distribution for the student weights 
and a microcanohical distribution for the teacher weights (they have fixed length). In the 
thermodynamic limit, the a priori student distribution is equivalent to a microcanonical 
distribution with the weight vector constrained to be of length m. This suggests 
there may be some scale invariance associated with scaling of the student weights, the 
temperature, ,9 and the weight decay A. If the error measure, E(W, a), is independent of 
the length of the student weight (as for a hard threshold), then a scale transformation in 
the student weights can be absorbed by a renormalization in the weight decay parameter 
A. This is not the case for the linear perceptron; in this case, if the error measure depends 
only on terms quadratic in the student weights, a renormalization of @ would leave the 
student distribution unchanged. However, the presence of the noise means that any scale 
transformation in the weights cannot be absorbed by a renormalization of p or A without 
a corresponding transformation in the noise distribution. Thus there is no simple scaling 
property of the system studied in this paper. 

The a posteriori student distribution is dependent on the instances of the training set. 
We can remove this dependence by averaging over the training set. This average is called 
a quenched average and is denoted by (( )). 

3. The replica calculation 

In this section, the free energy and hence the generalization and training errors are calculated 
by the replica method. 

3.1. Free energy 

The calculation follows the formalism of Seung et al, in this case, there is also static noise 
on the training patterns which means that whenever a quenched average is performed, an 
average over the training data noise must also be done, since the actual manifestation of the 
noise affects the student weight vector and hence the average generalization and training 
errors. 

The order parameters that evolve from the calculation are defined to be 
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which represent the overlap between the teacher and solution weights, and between the 
solution weights respectively: p and U are replica indices. 
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The replica symmetric ansatz is assumed, so that the order parameters become 

Qq =qo&+q1(1 -L )  

R ,  = R .  

The parameters qo, q1 and R are defined by the equations above and 8,," is the Kronecker 
delta. The 'conjugate' order parameters Go. $1, k arrive through introducing integral 
representations for the delta functions corresponding to the order parameters. The conjugate 
order parameters are related to the local field acting on the student weight vector [ 1 I]. 
Following the procedure described in Seung et a1 and after some calculation, the free energy 
per weight is obtained 

In the thermodynamic limit, only the extrema of the free energy per weight, f ,  
contribute. Thus equation ( 5 )  must be extremized over qo, 41, R ,  $0, G I ,  k ,  giving the 
saddle point equations 

1 
q o = q 1 + -  BA+k 

where it is assumed that the number of training examples scales as (Y times the number of 
weights, that is CY = p / N .  

It is straightforward to check that these equations reduce to those presented by Seung 
et al when qo = I and D = 1 corresponding to a spherical normalization on the student and 
teacher weights. This result will be discussed in more detail in the next section. The form 
of the free energy presented in equation (5) is similar to that given by Seung et a1 for a linear 
perceptron learning a teacher with an unrealizable threshold, that is U' = (WO . 8' + 0). 
where 0 is the teacher thresholdibias. The free energy is identical if the spherical constraint 
is assumed and BA + 0. that is zero weight decay. In this case the bias is identified with 
the standard deviation of the noise on the teacher. Thus in this limit, an unrealizable bias 
on the teacher is actually equivalent to adding noise to the teacher, which is then averaged. 
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The saddle point equations can be solved simultaneously to give 

a,9A R E -  
4- f f  

where 

1 
(Y - A) f --J(l -U -A)’ +4A W. 

@(or, A) = A + APQ + U. (19) 

The definition of 6 is independent of ,9. 
Clearly from equation (4) and the replica symmetric ansatz, qo is the average length 

squared of a student weight vector, and thus ql/qo is the average normalized overlap between 
replicas. This varies from zero, corresponding to an infinite number of student solutions, to 
one, corresponding to a single student solution. R/Q& is the average normalized overlap 
between a solution and the teacher vector, which again varies between zero and one. Since 
41/40 < 1, Q = (40 - 41) 2 0. Thus we need only consider the positive root of Q. 

3.2. Generalization error 

Following Seung et al. the average generalization error, E* = (( ( E(W) )T  )), is a measure 
of a network‘s inability to solve a problem averaged over the entire data set. Assuming 
random, Gaussian distributed test patterns the generalization function, e(W), is given by 

1 
e(W) = /d@(s) 2N[(W - WO). SI’ 

This generalization function measures the network’s performance at learning the 
uncorrupted teacher. If the student weight vector exactly equals that of the teacher cg = 0; 
this function resembles that studied by Krogh and Hertz [6]  up to a factor of two which 
results from a difference in the definition of the generalization function. The student could, 
however, be compared with the corrupted output: this would add an extra term of $ y z  to 
cg to take account of the student’s inability to learn the uncertainty in the teacher as studied 
by Seung et al. Hereafter, cg will refer to the network’s generalization error for learning 



5772 

the ‘clean’ teacher. When the generalization error in comparison with the corrupted teacher 
is referred to, the notation e; will be used, that is ci 

Taking the thermal average of the generalization function followed by the average over 
the quenched disorder gives the generalization error, again following Seung et a1 
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+ y2/2 .  

The generalization emr depends on the parameter Qz, representing the square length of 
the teacher weight vector. This is as expected, since a linear perceptron is used, the error 
is an absolute error and therefore the larger the weight vectors, the bigger the errors. The 
form of the generalization error €1 is similar to that given by Seung et a1 for an unrealizable 
teacher as discussed earlier. 

3.3. Training error 

The average training error is defined as 

where f is the free energy per node. This is an average measure of how badly the network 
does on its training data set. So, differentiating equation (5) and substituting in for the 
saddle point equations (7H11) yields 

The first term in the equation above arises from the weight decay term in the training energy, 
since qo is the normalized average length of the square of a student weight vector. The 
temperature dependence enten the equation through the first and second terms. The final 
term is temperature independent, since from equation (15) the 8’ denominator is cancelled. 

4. Network performance for various limits 

Using the general expressions derived in the previous section, the system’s performance in 
the limits of the main parameters, T, J. and (Y will be examined. Where the limits correspond 
to results from either Krogh and Hertz [6] or Seung et a1 [I I ]  comparisons will be drawn. 

4.1. Zero T and zero h 

The T + 0 limit corresponds to training with no dynamic noise and the h + 0 limit 
corresponds to training with no weight decay term, and therefore no constraint on the 
weights. However, in this case, the integration over the weights performed in the evaluation 
of the partition function (2) is infinite and so A = is defined, with A finite as T .  h. --f 0, 
giving a finite dishibution of weights allowing the weight decay term to control the noise 
effects on weight growth. In this limit, equation (18) gives two solutions 
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Substituting these into the solved saddle point equations, (12), (13) and (16), gives 

Substituting these values into equation (21) yields 

The average training error is given by equation (22) 

0 a s 1  
a > 1. = I ( y Z / k ) ( a  - 1) 

It can be seen from equation (23) that the effect of the noise is to lengthen the student 
vectors. This in rum means that the generalization error is expected to be higher in the 
presence of noise since, for a linear perceptron, the student can only generalize perfectly 
when it is coincident with the teacher and the student cannot coincide with the teacher if 
it is a different length. This is confirmed in equation (26). The effect of noise can be 
cancelled by presenting more patterns, that is increasing a. From equation (26). for a < 1 
the A parameter can be increased to reduce the generalization error. Since these equations 
are only valid in the zero T ,  h limit, this corresponds to taking T to zero faster than h. that 
is, training with an infinitesimally small but finite weight decay. 

There is a discontinuity at a = 1 in the average generalization error. Since, for this 
value of a there are only just enough examples to specify the N weights and the added 
noise in the data makes the equations unsolvable, resulting in a sudden increase in average 
error. Then as more pattems are presented, the student weights approach the teacher and so 
the errors decrease. Above a = 1 the training error is increased from zero in the presence of 
noisy data, as seen in equation (27). This is because as a increases above one, the network 
cannot leam the random noise present on the data. 

Some of the results presented by Krogh and Hertz [6] are equivalent to taking the zero 
T .  A limit with A + w and normalizing the teacher vector to be of length one, that is 
Qz = 1. Inserting these limits into equation (26), gives 

which is in exact agreement with the generalization error calculated for a linear perceptron 
by Krogh and Hertz 161 apart from the factor of two due to the difference in definition. 
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4.2. Zero T andfinite A 
In this section, the temperature is held at zero whilst the weight decay is allowed to increase. 
This corresponds to learning with a weight decay, but no dynamic noise on the weights. At 
zero temperature, there is only one solution to equation (18), that is, Q = 0. This implies 
that there is only one solution in the student weight space. In this case, the number of 
replicas tends towards one. 

A P Dunmur and D J Wallace 

The training error at zero temperature is given by 

where from equation (19), @ = $ ( l  + a  + A f ,/(1+ a + A)2 -4a). 

on 
0.0 05 1.0 15 20 

Di > 

Figure 1. The training error 6, (lower curves) 
and generalizalion emr 6; (upper curves) against lhe 
number of panems per weigha v for different values 
of the weigh1 decay parameter. A. The data se1 was 
corrupted by noise of variance y z  = 0.2. The full c w e  
is for A = 0.0, the broken curve is A = 0.01, the long 
h k e n  curve is 1 = 0.1, the chain C U N ~  is A = 0.2 
and the dotted curve is A = 0.5 This Rare shows the 
asymptotic behaviour of the training and genedilation 
errors as predicted by Seung er al. 

PigureZ. T h e g e n e r a l i i o n e f s  against the weight 
deeay parameter A for different values of U. 

It is clear from equation (29) that when the weight decay equals the variance of the 
noise on the data, y2,  divided by the squared length of the teacher, the training error is 
constant. This can be seen in figure 1 in which the training and generalization errors are 
plotted for noise of variance, y 2  = 0.2 and a teacher of normalized length one (Q2 = I). 

The effect of a weight decay is to increase the initial training error above zero. This is 
because a non-zero weight decay term automatically adds a penalty term to equation (1) as 
well as enforcing a certain weight vector length. The result of Seung et a1 that the training 
and generalization error approach the same value from below and above respectively for 
large a can be seen to hold for values of A < yz, but does not hold as the weight decay 
increases above this value since here the weight decay term eliminates part of the data, 
increasing both the training and generalization errors. 

The optimum weight decay parameter estimated in section 5 can be picked out 
in figure 2, however, the minimum is not significantly lower than the surrounding 
genedization error for larger values of a. 
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4.3. Zero y 

The zero y limit corresponds to having an uncorrupted data set. This was studied by 
Seung et al using a spherical constraint on the weights: hence we should be able to 
draw some comparisons between a weight decay term and a spherical constraint on the 
weights. Applying the same procedure using a weight decay term requires an additional 
order parameter, 40. and its conjugate, &. The parameter 40 is associated with the mean 
length of a student weight vector. Using a spherical constraint, the length of the student 
weight vector, 40, as well as the length of the teacher vector, R are constrained to be one. 

In the zero T ,  A limit with y2 = 0, from equation (23) 

Therefore having a Gaussian distribution of weights such that A = 1/R2 will result in 
qo = Rz for all a. Therefore the average length of a student weight vector is the same 
as the length of the teacher. This is similar to a spherical constraint though not the same, 
since it is the average rather than actual length of the student weight vector which lies on 
the sphere. To mimic the spherical constraint of Seung el al, S2 is set to be one. The saddle 
point equations of Seung et a1 for a linear perceptron with continuous weights are then 
homomorphic with the saddle point equations (6)-(11). 

From equations (23). (24) with zero y ,  T ,  A and assuming the distribution of weights 
above, that is A = l/QZ 

- = (  41 a a < 1  
40 1 LY > 1. 

Hence for a > I ,  the average overiap between replicas is one and therefore all the replicas 
tend towards the same vector and so there is only one solution within the student weight 
space. For a 4 1, the number of possible student solutions is greater than one due to the 
fact that there are less than N equations specifying N unknowns, therefore the system has 
some freedom to find a solution. The same distribution of weights gives, from equation (25)  

- = I  R a a < l  
1 a > 1. 

The average overlap with the teacher tends towards one as a increases through one. This 
then makes the generalization error eg = 0, as can be seen from equation (26). For a > 1 
the training set more than specifies the student and so there can only be one solution, the 
totally correct one. In the region, a 4 1, eg = ( I  -a)QZ. The above results for Q2 = 1 
again agree with the results of Seung et al. 

is zero for all a. This is as expected, 
since in this case the student can always learn the data set exactly. that is, the problem is 
realizable. At finite values of A, with zero static noise, the training and generalization errors 
increase from their values at A = 0, as can be seen in figure 3. At finite temperature, the 
errors are increased. The presence of the weight decay in the training energy equation (1) 
causes the problem to be unrealizable, and therefore the generalization error and training 
error can never be zero. 

At zero temperature, zero A and zero y2. 
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0.0 05 1 .O 1.5 2.0 
m 

Figure 3. The generalization ermr 6B (upper curve) 
and training error 6, (lower curves) for zero noise on 
the dam ret ( y  = 0) and zero temperature. The broken 
curves a for A = 0.1 and the full curves are A =US.  
The doued cum is the generaJimion emr for zero A. 

r b  

Figure 4. The optimum weigh[ decay parameter, A 
ploned against the temperature divided by h e  number 
of patterns per weight, T/a. The top WO curves are 
for y 2  = 0.8 and the bottom two y 2  = 0.2. The full 
curves are for normalized number of patterns (I = 1.0 
and the dotted curves are for a = 0.2. 

4.4. Large a 

The large a limit is of interest, since it displays the behaviour of the network as the 
number of training pattems is increased significantly. The approximations for various order 
parameters are to second order in l/a 

T - =  4' 1 - - + o(a-2) 
40 an2 

-- f i n  - I - -  ff 'IT -+ -  s12 3 +O(a-Z) 
R 

1 
E - -(T + y2) + 0 (a-2) - 2a (33) 

These results are in agreement with those presented by Seung ef U( for large U. The 
large a behaviour of the percepon is similar to that predicted using a spherical constraint, 
except, the training error is increased by the presence of a weight decay parameter. The 
weight decay has no influence on the generalization error or the average overlap with the 
teacher at large enough a, thus training with a wzight decay cannot degrade generalization 
for a large training set. The average number of solutions is unaffected by either the weight 
decay or the noise on the data set from equation (31). 
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4.5. Large A 

The large A limit corresponds to narrowing the distribution from which the student weight 
vectors are drawn. The generalization error in this limit is 

Thus for large weight decays, the amount of noise in the data set has little effect on 
the generalization error since it appears at 0 (A-’). The order A-] term increases the error 
for T =- 2a which suggests that with large weight decays, better results can be obtained by 
training at temperatures less than 2a; further comments are made in the next section 

5. Optimal weight decay parameter 

It has been shown by Krogh and Hertz that there exists a Aopt which minimizes the 
generalization energy. This can be found by differentiating E* at finite A. 

Given the generalization error from equation (21) 

For zero T, a Q/aA = 0 and putting a@A = 0 yields 

Aopt = Y 2 / Q 2  (36) 

which for Q2 = I agrees with the result of Krogh and Hertz. 
Now consider the general case of finite T .  At finite temperature the condition, 

acgplah = o gives 

4aA2Q2(A - $) + Tq3/’ (a  - 1) - T@(@ - A ( 1  + a  + A)) = 0 

where @ = ((1 + ct + A)’ - 4a). 
This equation may be solved numerically and the results for Q = 1 are presented in 

figure 4. The solutions tend to infinity as ct,S + 0.5 from below, above this temperature, 
the optimum A is infinite. This value of the weight decay parameter corresponds to having a 
prior weight distribution of zero weights, i.e. a random guess gives the best generalization. 
Equation (35) agrees with this result since above ff,S = 0.5 the generalization error gets 
worse. The result can be explained in terms of the signal-to-noise ratio and is therefore 
natural. Thus an initial temperature for an annealing schedule may be postulated. 

For the larger values of T, the optimum generalization error is not significantly less than 
the surrounding values and therefore training at A,, is not strictly necessary. The effect of 
the noise on the training set is to increase the optimal A at low values of T i f f .  
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6. Conclusion 

A linear perceptron was studied using a statistical mechanics formalism based on the replica 
method as presented by Seung et al [ I  I]. The network's training data set was generated by 
a known teacher perceptron and then compted by additive Gaussian noise. The perceptron 
was then trained stochastically to lean the hidden rule by minimizing an energy function 
(the training energy) with respect to the network's weights. A weight decay term was 
introduced into the calculation eliminating the need for a spherical constraint as used in 
previous calculations. The training energy was used to generate a Gibbs distribution on the 
possible student weight vectors for asymptotic times and from this distribution the average 
properties of the network were calculated. 

The relationship between the weight decay and a spherical constraint was investigated; 
the spherical constraint was interpreted as a special case of the weight decay in the m 
temperature limit. The zero weight decay limit was shown to make sense only in terms 
of taking the zero temperature limit at the same time, this limit agreed with the results of 
Krogh and Heltz [6]. The form of the free energy was seen to be similar to that given 
by Seung et a1 for the case of an unreaikable threshold on the teacher in the limit of zero 
weight decay. It is natural therefore to expect that the effect of noise on the training set 
can be reduced by training with h threshold. 

The weight decay was shown to be useful in decreasing the generalization error when 
the data set contained noise and the best (minimum generalization error) weight decay 
parameter was calculated at tinite h i n g  temperature. Adding noise to the data set produces 
a corrupted energy surface. Training a network stochastically smooths the energy surface 
to within limits prescribed by the value of the training temperature. However, training 
with a weight decay term smooths the energy surface by eliminating those weights with 
small eigenvalues and therefore only minor contributions to the underlying solution. This 
means that when training a network stochastically aS well as with a weight decay term, the 
optimum generalization error is found at zero temperature and the value of the weight decay 
parameter is as described before. 

There is a temperature (T = Za)  above which the optimum weight decay is infinite. 
This can be interpreted as the value of the temperature where the noise swamps the data. 
This could suggest an initial temperature far an annealing schedule. When the weight 
decay is increased above the level of the noise on the training data set the training error 
is higher for low numbers of pattems (small (U) and decreases as the number of pattems 
increases. This can be understood because for higher values of the weight decay parameter, 
the penalty term is removing some of the information contained in the data as well as the 
spurious information in the noise on the data 
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